

A Unit of Teledyne Electronic Technologies

2.0 to 7.5A, 250 Vrms Optically Isolated AC Solid-State Relay

Part Number*	Relay Description
KA00HF	2 A, 250 Vrms, AC Solid-State Relay
KA58HF	2 A, 250 Vrms, AC Solid-State Relay with Thermal Protection and Thermal TRIP Status
LA00HL	7.5 A, 250 Vrms, AC Solid-State Relay
LA58HL	7.5 A, 250 Vrms, AC Solid-State Relay with Thermal Protection and Thermal TRIP Status

^{*} The Y suffix denotes parameters tested to MIL-PRF-28750 test methods. The W suffix denotes parameters tested to Teledyne specifications.

ELECTRICAL SPECIFICATIONS

(-55°C TO +110°C UNLESS OTHERWISE SPECIFIED)

INPUT (CONTROL) CHARACTERISTICS

0. Tamainal Osafianastian (Osafia 4)	N.A.:		11	
2 Terminal Configuration (See Fig. 1)	Min	Max	Units	
Input Voltage (See note 2)	3.8	32	Vdc	
Input Current (See Figure 1)				
V _{IN} = 5 Vdc		15	mA dc	
Turn-Off Voltage (Guaranteed Off)		1.5	Vdc	
Turn-On Voltage (Guaranteed On)	3.8		Vdc	
Reverse Voltage Protection		-32	Vdc	
INPUT (CONTROL) CHARACTERISTICS				
3 Terminal Configuration (See Fig. 1)	Min	Max	Units	
Bias Voltage (See note 2)	3.8	32	Vdc	
Bias Current (V _{IN} =32 Vdc)		16	mA	
Control Voltage Range	0	18	Vdc	
Control Current (at 5 Vdc)		250	μAdc	
Turn-On Control Voltage		0.3	Vdc	
Turn-Off Control Voltage	3.2		Vdc	
OUTPUT (LOAD) SPECIF	FICATIO	NS		
	Min	Max	Units	
Load Voltage	20	250	Vrms	
Frequency Range	40	440	Hz	
Continuous Load Current (See Figure 3)				

FEATURES/BENEFITS

- Available with thermal protection and thermal TRIP status: Provides self-protection from thermal runaway conditions and indicates protection state for system BIT.
- Optical Isolation: Isolates control elements from load transients with reduced EMI.
- Fully Floating Output: Eliminates ground potential loops and allows the output to sink or source current.
- Buffered Control: Relay can be controlled directly from TTL or CMOS logic circuits.
- Integral Snubber Circuit: Enhances dV/dt capability while minimizing EMI.

DESCRIPTION

The Series KA/LA solid-state relays (SSRs) is designed for use in AC power switching applications where safety and reliability are primary concerns. These SSRs are rated for load voltages up to 250 Vrms from 40 to 440 Hz and are ideal for resistive and reactive loads with power factors as low as 0.2. Inverse parallel SCRs are configured for zero voltage turn on. Optical isolation to 1250 Vrms between the control (input) and load (output) allows the load to be safely controlled by logic circuitry. The KA/LA series is available with thermal protection and thermal TRIP status. In case of a thermal runaway condition, the SSR will shut down the output switch and latch off until the input is reset and the junction temperature returns to a safe level. When the output does latch off, the TRIP status line will yield a logic level output indicating the protection state of the SSR. This feature provides the user with failure mode indication while enhancing the system diagnostic capability. These SSRs are available to the Y screening level of MIL-PRF-28750 and are packaged in low-profile hermetically sealed cases.

KA and LA without Heat Sink

LA with Heat Sink

Output Voltatge Drop

2.0

7.5

1.2

Arms

Arms

Vrms

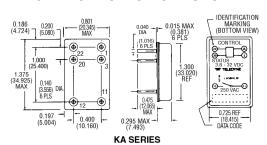
OUTPUT

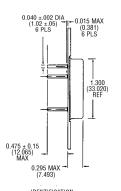
A Unit of Teledyne Electronic Technologies

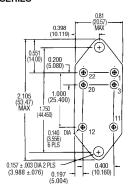
OUTPUT (LOAD) SPECIFICATIONS				
	Min	Max	Units	
Off-State Leakage Current (250 Vac, 400 Hz)		10	mA	
Turn-On Time		1/2	Cycle	
Turn-Off Time		1	Cycle	
Transient Voltage (5 sec, 25°C)		<u>+</u> 500	V pk	
Zero Voltage Turn-On Point		<u>+</u> 15	V pk	
dv/dt	100		V/μs	
Surge Current	MIL	MIL-PRF-28750		
Load Power Factor	0.2			
Insulation Resistance @ 500 Vdc	10 ⁹		Ohm	
Input to Output Capacitance		15	pF	
Dielectric Withstanding Voltage (60Hz)	1250		Vrms	
Junction Temperature at Rated Current	(T _J Max)	125	°C	
Thermal Resistance Junction to Ambient	(θ _{JA})	30	°C/W	
Thermal Resistance Junction to Case (θ	_{IC})	5	°C/W	

STATUS OUTPUT TRUTH TABLE

Status	Control	Output
Output State	Input	(Load) State
Off (High)	Low	On
On (Low)	Low	Tripped (Off)
Off (High)	High	Off
On (Low)	High	Non-applicable condition


STATUS OUTPUT SPECIFICATIONS


	Min	Max	Units
Status Supply Voltage		32	Vdc
Status "OFF" Leakage Current @ 32 Vdc		10	μAdc
Status Sink Current (V _{so} ≤ 0.4 Vdc)		10	mAdc
Status "ON" State Voltage @10mAdc		0.4	Vdc

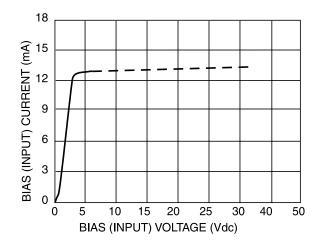


MECHANICAL SPECIFICATIONS

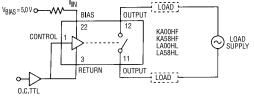
RETURN

LA SERIES

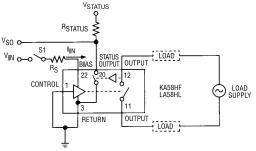
DIMENSIONS ARE SHOWN IN INCHES (MILLIMETERS)



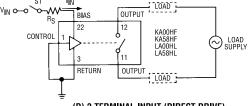
A Unit of Teledyne Electronic Technologies

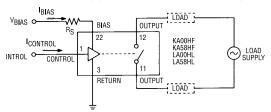

ENVIRONMENTAL SPECIFICATIONS

	Min	Max	Units
Ambient Temperature			
Operating	-55	+110	۰C
Storage	-55	+125	۰C
Shock (0.5 ms Pulse)		1500	g
Vibration (100 g)	10	3000	Hz
Acceleration		5000	g



INPUT CURRENT VS VOLTAGE FIGURE 2 (SEE NOTE 2)

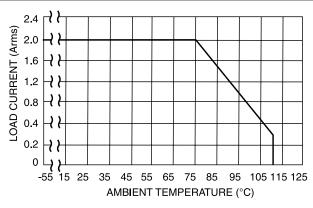

VSTATUS RSTATUS V_{S0} ∞ **o**-IBIAS VBIAS o LOAD STATUS OUTPUT BIAS 22 CONTROL O LOAD SUPPLY OUTPUT LOAD (A) 3 TERMINAL INPUT WITH STATUS (See Note 7)


(B) 2 TERMINAL INPUT (OPEN COLLECTOR TTL DRIVE)

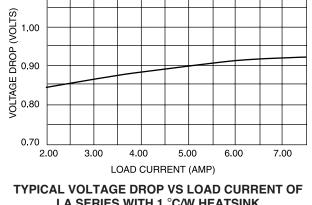
(C) 2 TERMINAL INPUT (DIRECT DRIVE) WITH STATUS

(D) 2 TERMINAL INPUT (DIRECT DRIVE)

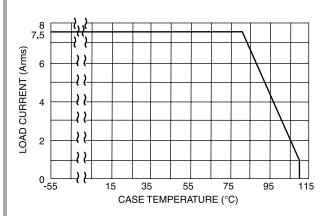
(E) 3 TERMINAL INPUT WITHOUT STATUS


WIRING CONFIGURATION FIGURE 1 (See Note 1 & 2)

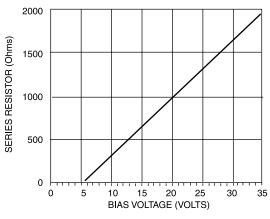
NOTES:


- 1. Control input is compatible with CMOS or open collector TTL (with pull up resistor).
- 2. For bias voltages above 6 Vdc, a series resistor is recommended. Use a standard resistor value equal to or less than the value found from Figure 6.
- 3. Unless otherwise noted, the input voltage for functional tests shall be 5 Vdc.
- 4. Output may temporarily lose blocking capability during and after a surge, until T_J falls below maximum.
- 5. Transient suppression must be used to limit the voltage to < 500 Vpeak when switching inductive loads.

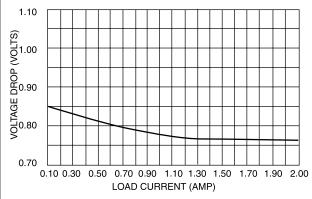
A Unit of Teledyne Electronic Technologies

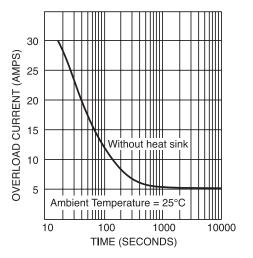


THERMAL DERATING CURVE LA SERIES / KA SERIES WITOUT HEATSINK FIGURE 3 (A)



1.10


LA SERIES WITH 1 °C/W HEATSINK FIGURE 5


THERMAL DERATING CURVE LA SERIES WITH HEATSINK FIGURE 3 (B)

SERIES LIMIT BIAS RESISTOR VS BIAS VOLTAGE FIGURE 6 (SEE NOTE 2)

TYPICAL VOLTAGE DROP VS LOAD CURRENT OF LA SERIES WITHOUT HEATSINK **FIGURE 4**

TYPICAL THERMAL TRIP TIME KA58HF AND LA58HL FIGURE 7